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Abstract. Osmotic pressure data in the semi-dilute polymer concentration range are inter- 
preted in terms of excluded volume and Edward’s screening length. The values obtained 
are compared with the results of a neutron scattering experiment. 

The statistics of polymer solutions at concentrations high enough for chains to overlap 
have received considerable and successful theoretical attention. In the Flory-Huggins 
theory (Flory 1957), the free energy of mixing from which all thermodynamical observ- 
ables are derived, could be determined by a free volume type of argument. More recently, 
Edwards (1966) has formulated the problem in a self-consistent field approximation, 
which in contradistinction to the previous theory is valid only up to a finite concentration, 
which defines the semi-dilute range. Problems of interest raised by these theories are (i) 
the existence of the semi-dilute range, (ii) the comparison between the values of the 
parameters used in both theories and identically defined. In two earlier papers (Cotton 
et al 1972 and to be published) we discussed the first aspect and concluded that the semi- 
dilute is very distinct from the dilute solution. This statement is often found in the 
literature (eg Flory 1957). It is based (Kuwahara et a1 1967, Leonard and Daoust 1965) 
on the sudden change of slope C#I of the osmotic pressure concentration ratio against 
concentration c at the onset of overlap c* (figure 1). In a scattering experiment, a good 
observable which reflects this distinction is the screening length introduced by Edwards 

where c is the concentration in g ~ m - ~  and d is the Avogadro number. The other 
quantities refer to the statistical element, 1’ the mean square length, m the mass and v the 
excluded volume. The values obtained for t J c  by neutron scattering were (Cotton et al 
1972) (6.5k0.5) x 

(i) Is it possible to determine the value of the screening length from the osmotic 
pressure concentration dependence? Although this is feasible in principle, there is no 
published data. 

(ii) How does such a value of the screening length compare with the neutron scattering 
result? 

(iii) In what sense does the Edwards description better represent the experimental 
data than the Flory-Huggins theory, and what is the physical difference betwwen the 
two formulations? 

g’” cm- 1/2.  The following problems are discussed here. 
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The osmotic pressure concentration dependence given by Edwards (1966) as 

where ~,V' and n are the number of chains and statistical elements,'cm3, contains the 
screening length as a parameter. Before discussing the possibility of determining this 
quantity from the experimental data, it is necessary to introduce the following modifica- 
tion into formula (2). According to Edwards (1966). formula (2) is physically acceptable 
as long as 

If < is somewhat smaller than d, that is, 

where A' is the number of segments per chain, the osmotic pressure (2) becomes negative. 
The concentration for which the minimum osmotic pressure is zero is given by 

(4) 
3cm 

7C2dl6' 
e = -  

Condition (3) states that the screening length has to be greater than the average 
distance d between neighbouring chains. However, use of the random phase approxima- 
tion in the derivation of the density fluctuations in semi-dilute solutions (Jannink and de 
Gennes 1968), only requires that 

nt' << 1 

which yields 

5 > /,J12 

as a sufficient condition. We can write (1) as 
1 2  

t=(%) 

or 

In the semi-dilute range the distance d is smaller than the radius of gyration R, 

The right hand side of this expression is part of the Flory relation (Flory 1957) 

(7) 
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where a is the Flory excluded volume polymer expansion factor. For a good solvent 

< 1.  
1 

4nJ6(a5 - a 3 )  
( 2 d - 2  < 

Hence 5: cannot satisfy inequality (3). On the other hand. using equation (10) we can 
replace (5) by 

"'2 

n13 < -(:) a 5 - u 3  71 

In a good solvent and for large N ,  the value of N' ' ( a 5  -a3 ) - '  is never greater than 30 
(Brandrup and Immergut 1967). It is therefore sufficient that 

5: > (;) 1/3-( 1 -) 90 
J12 n 

Thus we replace the Edwards condition (3) by the less stringent condition that the 
screening length must be greater than the mean distance between statistical elements 

5: > (;) 1'3 

The values found for 5 in a neutron scattering experiment satisfy (14) but not (3).  In 
order to measure 5: in an osmotic pressure experiment, we need a formula for which the 
concentration dependence is positive at all values of 5 satisfying (14). Now the negative 
term in equation (2) arises from the evaluation of the monomer density-density fluctua- 
tion. The latter contributes (de Gennes 1968T) to the free energy of interaction by the 
term (see the appendix) 

iL kT 
AF=-l im d q q 2 1 n  

2nR+0J0 (2n) 

This quantity is usually made finite by subtracting the self-energy of the chain, so that 

The contribution of the self-energy is, however, over estimated in this equation. In 
particular for q < 1/1, no correction to the point-interaction hypothesis is necessary. 

Therefore we correct the self-energy by the quantity 

kT 1 (-' 
2n ( 2 7 ~ ) ~  I ' 

___- 

The osmotic pressure becomes now instead of (2) 

This expression is always positive if relation (14) is satisfied. 

tion of the data with formula (18) faces two difficulties. 
t Copies obtainable from G Paillotain, CEN Saclay, 91 Gif-sur-Yvette on request. 

A typical osmotic pressure concentration dependence is shown in figure 1. Interpreta- 
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Figure 1. Osmotic pressure data as a function of concentration for potystyrene of molecular 
mass M = 5 x lo5, in toluene. The data (0) are taken from Cotton er a/ (1973); broken 
curve, best fit with the virial expansion, c < c * ;  full curve, best fit with formula (18), c > c*. 
Equation (18) was used to interpolate the data in the range c* = c, = gcm-3 to 
c2 = 4 x g ~ m - ~ .  This curve below c1 is an extrapolation of equation (18). 

(i) The lower limit of the semi-dilute range is given by the inequality d < R, ,  or 

mN 
c > c * = -  Ridc4' 

This limit is thus not precisely defined. 
(ii) It is seen that the concentration range over which the screening length modifies 

the osmotic pressure (by a departure from linearity of R/C)  is small. Thus the value 
obtained for 5 cannot be very precise. 

The theoretical curve (18) was fitted to two sets of data, one with a polystyrene of 
number average molecular weight MI = 3 x lo5 (Cotton et a1 1973). The other with 
M ,  = 5 x lo5. The solvent used in both cases was toluene. Concentrations ranged from 
0.01 to 0.04 g cmV3. The unknown parameter 5 in (18) was expressed in terms of number 
average molecular mass M ,  whose value is determined by the zero concentration limit of 
the osmotic pressure. Values of 4;Jc were determined by a best fit method (Tournarie 
1969). They are : 

( J c  = (4.1f4)x 10-8g1'2cm-'/2, 

~ J c  = (6.5 -t 5) x lo-' g'" cm- l i Z ,  

for M ,  

for M,. 

The errors associated with these values of ( J c  are large compared to the errors 
usually obtained in the determination of the molecular mass and the second virial 
coefficient by osmotic pressure. It will be difficult to improve the experimental precision, 
as described above. 

Despite the shortcomings of such an experiment, it is possible to infer the following 
conclusions : 
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Figure 2. ~ J c  values: broken curve, as a function of concentration from the scattering 
experiment of Cotton et al(l972). Molecular mass M, = 6.5 x lo5 (U) and M, = 2.1 x lo6 
(0) of polystyrene in C,D,. The upper plateau was measured in the dilute solution range. 
Full curve, determined by the osmotic pressure data in figure 1, interpreted with formula 
(18) in the semi-dilute concentration range, for the molecular mass M, = 5 x lo5. 

(i) The screening length obtained from osmotic pressure measurements cannot be 
greater than the distance between chains (3), even if we allow the maximum possible 
error. This confirms the neutron scattering result. On the other hand, central values of 
( J c  are consistent with neutron results and satisfy inequality (14). 

(ii) The alternative interpretation of the osmotic pressure-concentration dependence 
in the semi-dilute range is given by the Flory-Huggins theory. Instead of (2) or (18), one 
has 

7-L n2E2 n3ij3m3 
- = J1’+-- -m2(+-X)+-(L-@) ,  
kT VI V , d 2  

where fi is the partial specific volume of the polymer and VI the molar volume of the 
solvent, x is the dimensionless quantity characterizing the interaction energy per solvent 
molecule and 0, a dimensionless corrective term for the entropy of mixing. Most 
experimental data for c > c* are interpreted with equation (20) (Kuwahara et a1 1967). 
The departure from linearity of n/c is produced here by the triple monomer encounters. 
However. it has been suggested that at concentrations considered (c < 0.04gcm-3) 
triple monomer encounters are negligible (Edwards 1966). On the other hand, the 
monomer density-density fluctuations, which are important at all concentrations, 
produce in the semi-dilute range an irrational concentration dependence ( c ~ ’ ~ )  of the 
osmotic pressure, because the radial pair correlation function cannot be expanded in c 
for c > c*. The latter point has been confirmed by a neutron scattering experiment 
(Cotton et a1 1972). Experimentally, the choice between equations (20) and (18) is a 
question of appreciation of the departure from linearity of z / c  against c. In the Flory- 
Huggins theory this departure increases with c, in the Edwards theory it decreases with c. 
The T I / C  dependence in figure 1 is clearly in favour of a decreasing departure from linearity. 

We feel that equation (2) is better constructed to fit the concentration dependence 
especially at the lower end of the semi-dilute range. This is of course of great interest 
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for a study of the intermediate region between the dilute and the semi-dilute ranges. 
which has not yet received any theoretical attention. 

On the basis of our result, we propose that the weaker inequality (14) holds for semi- 
dilute solutions. We would expect that inequality (3) holds for dilute solutions. if we 
use expression (1) in which c is replaced by the chain excluded volume u / N 2 .  This is 
however not the case. As for the interpretation of inequality (14), we may say that ( is a 
screening length associated with the screening of statistical elements, rather than chain 
density fluctuations. 
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Appendix. Derivation of formula (16) 

This formula, which is formula (3.15) in Edwards (1966), is derived from the monomer 
density-density fluctuation in de Gennes (1968). Onset of the excluded volume interac- 
tion in a semi-dilute solution gives rise to an excess energy per cm3 

(AE) = kT(+t.n2 + )c( 6n2)),  (A. 1) 

where 6n is the fluctuation in monomer density. The last term in (A.1) can be written as 
the Fourier transform of the neutron scattering law (Van Hove 1958) 

R - 0  

where q is the momentum transfer, S(q)  the scattering law and R the distance between 
the space points at which the fluctuation in density is considered. If we insert in (A.2) 
the scattering law (Jannink and de Gennes 1968) for semi-dilute polymer solutions 

we obtain the result (16) by quadrature 

dc' 
AF = io" (AE)(d7  
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